Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines
نویسندگان
چکیده
The hypothesis that dihydropyridine (DHP)-sensitive calcium channels have three distinct modes of gating has been examined. The major prediction is that the relative frequencies among modes depend on DHP concentration while the kinetics within a mode do not. We tested this by studying whole-cell and single-channel calcium currents in neonatal rat and adult guinea pig cardiac myocytes in different concentrations of several DHPs. In the absence of DHPs calcium currents declined with time but the kinetics, which are the focus of this study, were unchanged. Open-time frequency distributions had insignificant numbers of prolonged openings and were well fit by single tau's. Agonist DHP stereoisomers produced concentration-dependent changes in whole-cell tail current tau's. The frequency distribution of single calcium channel current open times became biexponential and the tau's were concentration dependent. The average number of openings per trace of channels with customary open times increased with increases in DHP concentration. Latencies to first opening for the customary openings and for prolonged openings were shorter in the presence of DHPs. A second larger conductance is another important feature of DHP-bound single calcium channels. Thus DHPs not only caused prolonged openings; they produced numerous changes in the kinetics of customary openings and increased channel conductance. It follows that these effects of DHPs do not support the hypothesis of modal gating of calcium channels. The mode model is not the only model excluded by the results; models in which DHPs are allowed to act only or mainly on open states are excluded, as are models in which the effects are restricted to inactivated states. We suggest a different type of model in which cooperative binding of DHPs at two sites produces the essential changes in kinetics and conductance.
منابع مشابه
Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties.
Dihydropyridines (DHPs) block L-type Ca2+ channels more potently at depolarized membrane potentials, consistent with high affinity binding to the inactivated state. Nisoldipine (a DHP antagonist) blocks the smooth muscle channel more potently than the cardiac one, a phenomenon observed not only in native channels but also in expressed channels. We examined whether this tissue specificity was at...
متن کاملProperties and modulation of cardiac calcium channels.
Voltage-dependent calcium channels are widely distributed in excitable membranes and are involved in the regulation of many cellular functions. These channels can be modulated by neurotransmitters and drugs. There is one particular type of calcium channel in cardiac cells (L-type) whose gating is affected in different ways by beta-adrenoceptor and 1,4-dihydropyridine agonists. We have analysed ...
متن کاملModulation of cardiac Ca(V)1.2 channels by dihydropyridine and phosphatase inhibitor requires Ser-1142 in the domain III pore loop.
Dihydropyridine-sensitive, voltage-activated calcium channels respond to membrane depolarization with two distinct modes of activity: short bursts of very short openings (mode 1) or repetitive openings of much longer duration (mode 2). Here we show that both the dihydropyridine, BayK8644 (BayK), and the inhibitor of SerThr protein phosphatases, okadaic acid, have identical effects on the gating...
متن کاملQuantitative Structure-Activity Relationship Studies of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers
Objective(s): The structure- activity relationship of a series of 36 molecules, showing L-type calcium channel blocking was studied using a QSAR (quantitative structure–activity relationship) method. Materials and Methods: Structures were optimized by the semi-empirical AM1 quantum-chemical method which was also used to find structure-calcium channel blocking activity trends. Several types of ...
متن کاملFunctional properties of cardiac L-type calcium channels transiently expressed in HEK293 cells. Roles of alpha 1 and beta subunits
The cardiac dihydropyridine-sensitive calcium channel was transiently expressed in HEK293 cells by transfecting the rabbit cardiac calcium channel alpha 1 subunit (alpha 1C) alone or in combination with the rabbit calcium channel beta subunit cloned from skeletal muscle. Transfection with alpha 1C alone leads to the expression of inward, voltage-activated, calcium or barium currents that exhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 93 شماره
صفحات -
تاریخ انتشار 1989